The Mahler measure of dihedral extensions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Mahler Measure Of

We prove a conjectured formula relating the Mahler measure of the Laurent polynomial 1 + X + X−1 + Y + Y −1, to the L-series of a conductor 15 elliptic curve.

متن کامل

Mahler Measure of Alexander Polynomials

Let l be an oriented link of d components in a homology 3-sphere. For any nonnegative integer q, let l(q) be the link of d−1 components obtained from l by performing 1/q surgery on its dth component ld. The Mahler measure of the multivariable Alexander polynomial ∆l(q) converges to the Mahler measure of ∆l as q goes to infinity, provided that ld has nonzero linking number with some other compon...

متن کامل

Class Groups of Dihedral Extensions

Let L/F be a dihedral extension of degree 2p, where p is an odd prime. Let K/F and k/F be subextensions of L/F with degrees p and 2, respectively. Then we will study relations between the p-ranks of the class groups Cl(K) and Cl(k). 1. A Short History of Reflection Theorems Results comparing the p-rank of class groups of different number fields (often based on the interplay between Kummer theor...

متن کامل

The Mahler Measure of Parametrizable Polynomials

Our aim is to explain instances in which the value of the logarithmic Mahler measure m(P ) of a polynomial P ∈ Z[x, y] can be written in an unexpectedly neat manner. To this end we examine polynomials defining rational curves, which allows their zero-locus to be parametrized via x = f(t), y = g(t) for f, g ∈ C(t). As an illustration of this phenomenon, we prove the equality πm(y2 + y(x+ 1) + x2...

متن کامل

On the Mahler Measure of 1 + X +

We prove a conjectured formula relating the Mahler measure of the Laurent polynomial 1 + X + X−1 + Y + Y −1 to the L-series of a conductor 15 elliptic curve.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2008

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa131-3-1